
Chapter 3
Statistical Models of the
Interstellar Medium

3.1 Introduction

The problem of modelling star formation in large scale simulations is a difficult one for

a number of reasons. Firstly, the detailed process of star formation is not fully under-

stood even in our own galaxy and additionally we expect that young galaxies in the

high redshift Universe will have wildly differing properties from those of our own qui-

escent disk. Secondly, on the scales of interest in Cosmological simulations (tens of Mpc

and upwards) we can not achieve the required spatial or mass resolution to resolve the

actual formation of stars. Most star formation prescriptions in the literature today ap-

proach this in one of two ways. Either by creating a set of rules that govern when a

‘gas unit’ (be that particle or grid cell) may change into a star particle, then converting

them in a stochastic manner (Kay et al. (2002)) or by describing the interstellar medium

(ISM) in a statistical manner (Springel and Hernquist (2003); Yepes et al. (1997)). In the

following chapter we introduce examples of the first generation of star formation mod-

els before discussing the major problems with them. We then describe in detail our own

implementation of the physical processes that are important in star formation and the

evolution of the ISM.

3.1.1 Models of Star Formation Using a Single Phase

The basic empirical law that most numerical models either use explicity or try to fit by

the adjustment of free parameters is the Kennicutt law (Schmidt (1959)):

ΣSFR = CΣN
gas (3.1)

Where Σ denotes a density per unit area. This simple power law relation between star

formation rate density (SFR) and gas density was found to hold over many orders of
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magnitude by Kennicutt (1988), who constrained the exponent to be N = 1.4 ± 0.2.

The basic process by which star formation is then modelled is to, at each timestep, ap-

ply some sensible criteria that describe whether or not a particular gas unit is eligible to

turn into a star. Some criteria that have been used in the literature include (X represents

a free parameter in each rule):

1. The minimum overdensity: δ > X

2. The minimum physical density: ρ > X

3. The maximum temperatute: T < X

4. Converging flow: ∇.v < 0

5. Jeans instability: τJ < τdyn

6. Cooling instability: tcool < tdyn

Rules 1 and 2 prevent underdense material from collapsing and forming stars, rule 3

prevents material that is too hot to collapse gravitationally from turning into stars. Rule

4 represents the local estimate of the divergence of the gas flow, for example in an SPH

simulation this is given by

∇.vi = − 1

ρi

∑
mjvij

1

2

[
∇iW (rij, hi) + ∇iW (rij , hj)

]
+
Hi − Λi

ρi
, (3.2)

where W (r, h) is the SPH kernel so ∇.W (r, h) is the direction of the gradient of the SPH

kernel at a given point. A negative divergence represents a net flow of baryonic material

into this mass unit.

Rule 5 forces that only material that is Jeans unstable (that is: it is unstable to any

perturbations and cannot diffuse away density fluctuations as sound waves) to collapse.

In a Lagrangian simulation a particle may be considered Jeans unstable if

hi

ci
<

1√
4πGρi

. (3.3)

Here, hi represents the SPH smoothing length of the gas particle, ci is the sound speed

in that particle.

The final rule represents the fact that as a gas cloud collapses it heats up. If the

time it takes for a gas cloud to radiate away this extra heat is less than the characteristic

timescale on which it can collapse then it can continue to collapse unimpeded; otherwise

it will become pressure supported.
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Table 3.1: Star formation criteria used by different authors
Author(s) Star Formation Rules

Pearce et al. (1999) (see Kay et al. (2002)) δ > X ; T < X

Summers (see Kay et al. (2002)) δ > X ; T < X ; ρ > X

Navarro and White (1993) ρ > X ; ∇.v < 0 ; tcool < tdyn

Steinmetz and Mueller (1994) ∇.v < 0 ; tcool < tdyn ; δ > X

Katz (1992) τJ < τdyn ; ∇.v < 0 ; tcool < tdyn

Cen and Ostriker (1992) δ > X ; ∇.v < 0 ; τJ < τdyn

Katz et al. (1996) δ > X ; ρ > X ; ∇.v < 0

Mihos and Hernquist (1994b) δ > X ; ∇.v < 0

A selection of the particular criteria chosen by a number of authors is included in

table 3.1.1. When some gas unit has been labelled as eligible to form stars by whatever

set of rules its author has chosen then its SFR is calculated by the Schmidt law (equation

3.1), and then depending upon its SFR has some probability of either

• being converted into a collisionless star particle representing millions, or hundreds

of millions of stars, or

• spawning a new collisionless star particle with a mass in direct proportion to the

SFR of the gas particle and decreasing the mass of the gas particle by an equivalent

amount

The first approach has the advantage that it is both simple to implement and actu-

ally cuts down on the amount of computational work that needs to be done on each

timestep as more stars are formed (star particles do not feel hydrodynamic forces). On

the other hand, the minimum amount of star formation that can be resolved is equal

to the mass resolution of the simulation. The second approach has the advantage that

smaller amounts of star formation can be resolved but it can be computationally very

expensive to calculate gravitational forces after spawning a lot of new collisionless par-

ticles in high density regions.

A comparison of different star formation methods (including most of those in table

3.1.1) was recently undertaken by Kay et al. (2002) who found that although each pre-

scription agreed well in most ways that some fundamental physical properties, such as

the fraction of baryons in stars, in each simulation could vary greatly between star for-
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mation treatments. The star formation histories for each method also showed significant

differences in shape.

One of the largest problems with the modelling of star formation in this manner is

that these star formation recipes are chosen purely phenomenologically and although

they may mirror the large scale behaviours of star forming regions they offer no insights

into the actual dynamic processes that go into the formation of stars.

Additionally feedback from core collapse (type II) SNe, described as an extra source

of thermal or kinetic energy in these single phase models, was found to have little ef-

fect in the early models. This is because the gas in the surroundings of star formation

sites is at high density and so is very efficient at just radiating away the added energy.

As a consequence, too much gas cooled in dense knots, producing galaxies much more

concentrated than those observed (Navarro and Benz (1991); Weil et al. (1998)).

3.1.2 Multiphase Star Formation

In response to these problems with the simplest star formation and feedback criteria sev-

eral authors have introduced ‘multiphase’ models for star formation in which the ISM

is treated as a number of distinct phases. These schemes take various forms including

modification of the simulation algorithm (Ritchie and Thomas (2001); Croft et al. (2000)),

treating the multiphase medium implicitly by formulating differential equations that

model the interactions between the phases(Yepes et al. (1997); Springel and Hernquist

(2003); Okamoto et al. (2005)), or by decoupling the cold molecular phase from the hot

phase by means of ‘sticky particles’ (Semelin and Combes (2002); Harfst et al. (2006)), re-

moving ‘cold’ particles from the SPH calculation (Hultman and Pharasyn (1999); Pearce

et al. (1999, 2001); Marri and White (2003)), or by explicit modification of the SPH rou-

tines to decouple cold, molecular gas from the hot phase (Scannapieco et al. (2006)). The

decoupling of the hot and cold ISM phases allows thermal heating from SN feedback to

become more efficient (due to the much lower density of the hot phase), and also allows

one to follow the properties of the cold molecular phase of the ISM. In this chapter we de-

scribe how the physical processes integral to the evolution of the ISM may be modelled

computationally.
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3.2 Details of the Sticky Particle Model

In typical simulations of galaxy formation we can resolve the Jeans length of the ambient

gas phase and so can treat its hydrodynamic properties consistently. However, we can-

not yet resolve the properties of the cold molecular phase of the ISM. We therefore follow

the evolution of the ambient gas phase using a hydrodynamic simulation code, whereas

we treat the cold phase using a statistical model that encapsulates the physics relevant

to the formation and evolution of molecular clouds. In this section we introduce the

properties of the sticky particle model and describe the physics we have implemented.

Following Efstathiou (2000) we consider the ISM to consist of warm and hot ambi-

ent materials, and cold molecular clouds. We additionally treat the properties of SN

remnants. Throughout this chapter the properties of the ambient medium will be repre-

sented with the subscript h, the properties of the molecular clouds with the subscript c,

and the properties of the gas internal to SN remnants, or hot bubbles, with the subscript

b.

The ambient gas phase is represented using the entropy conserving, parallel Tree-

SPH code GADGET2 (Springel (2005); Springel et al. (2001)). The properties of SPH

simulation codes were introduced in some detail in chapter 2. We will refer to the gas

component treated using SPH interchangeably as ambient, warm or hot, to distinguish

it from the cold molecular gas. We will see that in galaxy formation simulations, this

ambient (i.e. non-molecular) medium naturally develops three relatively well-defined

phases: a warm (T ∼ 104K) component in a galactic disk, a hot (T ∼ 106K)) tenuous

component of shock-heated gas in the halo, and a similarly hot component resulting

from gas heated by SN. The fourth, cold (T ∼ 100K) and molecular cloud phase is rep-

resented with sticky particles, which interact gravitationally with all other material in

the simulation and are allowed to stick together forming more massive sticky particles.

Stars and dark matter are both treated as collisionless particles by GADGET2.

The different phases of the ISM may interact with each other as follows: thermally

unstable ambient gas may collapse into molecular clouds via thermal instability (section

3.2.1). Molecular clouds can interact with each other to form GMCs (section 3.2.2). GMCs

then collapse into stars (section 3.2.5). Stars disrupt the cloud they formed from and may,

via SN feedback, return energy (section 3.2.6) to the ambient phase. Hot bubbles blown

by SNe can evaporate cold clouds (3.2.7) and heat the ambient medium.

Fig 3.1 contains a summary of all of the physics implemented in our model. Arrows
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represent a transfer of mass and/or energy from one phase to another. The distinction

between clouds and GMCs is somewhat arbitrary; they are separated in the figure to

allow an easy pictorial representation of mass and energy transfer within a single phase.

Appendix A contains a list of frequently used symbols and their meaning.

Each physical process will be treated in turn in the remainder of this section. We

first introduce the physics relevant to each physical process before discussing the nu-

merical implementation. We will also give our preferred physical values for the various

parameters that occur. How we choose these is discussed in section 3.3.

3.2.1 Radiative Cooling And The Formation of Molecular Clouds

Begelman and McKee (1990) show that under appropriate physical conditions, a thermal

instability may operate in hot gas which causes a fraction of the gas to condense into

much colder molecular clouds. The sticky particle star formation prescription contains a

basic representation of this process, based on a detailed treatment of baryonic radiative

cooling.

Relevant Physics

The radiative processes that we take into account are Compton cooling off the microwave

background, thermal Bremsstrahlung cooling, line cooling and photo-ionization heating

from Hydrogen, Helium and metal species in the presence of an imposed ionising back-

ground. These routines were developed for a different project and will be described

elsewhere1. Briefly, they use tabulated rates for radiative cooling and photo-ionization

heating for many species and ionization states computed assuming ionization equilib-

rium using CLOUDY (version 05.07 of the code last described by Ferland et al. (1998)) with

a UV background given by Haardt and Madau (2001). The rates are tabulated element

by element and we will assume solar abundance ratios and specify a fixed metallicity

of the gas in solar units. We do, however, note that the behaviour of the system may

depend upon precisely which value of the metallicity we choose, and investigate this in

section 4.4

Other processes such as cosmic ray heating, and cooling by dust and atomic lines

that affect the molecular gas in clouds are not treated explicitly since we do not model

the internal properties of the clouds themselves.
1We would like to thank our colleagues J Schaye, C Dalla Vecchia and R Wiersma for allowing us to use

these rates.
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Figure 3.1: Summary of the physical processes that operate in our

model of a two phase interstellar medium. The boundaries between

molecular and giant molecular clouds and between heated and non-

heated diffuse gas are somewhat arbitrary and they are separate out in

this figure only to highlight the different physical mechanisms that are

operating at any given time. Each arrow represents the transfer of mass

and/or energy from one phase to another.
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We include a simple model to determine the rate at which the ambient gas forms

molecular clouds. When we identify ambient gas that is thermally unstable (Begelman

and McKee (1990)) we allow it to collapse into molecular clouds. The rate at which this

process occurs is goverened by the rate at which the gas is losing thermal energy by

radiative cooling.

Numerical Implementation

Following Yepes et al. (1997) we define a density threshold, ρth, to determine when gas

becomes thermally unstable. Gas with ρ < ρth undergoes ordinary radiative cooling.

Gas with density above the threshold becomes thermally unstable and begins to be con-

verted to molecular clouds. In addition to the density criterion we add a maximum tem-

perature (Tth) for gas to be called thermally unstable which has the effect of preventing

SN heated gas in dense regions from collapsing straight to the cold phase.

When gas has been identified as thermally unstable it begins to form molecular

clouds at a rate controlled by the rate at which the gas can lose thermal energy by ra-

diative cooling
dρc

dt
= −dρh

dt
=

1

uh − uc
Λnet(ρh, uh), (3.4)

where uh and uc represent the internal energies per unit mass of the ambient phase and

cold phase respectively and Λnet is the cooling rate of the ambient gas (ergs cm−3 s−1).

We assume that the cold clouds remain at a fixed temperature of Tc = 100K hence their

thermal energy uc is a constant as well.

In practice, each ambient gas particle is identified as either thermally unstable, or

non-thermally unstable. Non-thermally unstable gas undergoes radiative cooling; ther-

mally unstable ambient gas forms molecular clouds at a rate controlled by the radiative

cooling rate, as described by Eq. 3.4.

In this way each ambient gas particle can keep track of what fraction of its mass is

in the form of molecular clouds. Gas in the molecular phase is ignored for the purposes

of the SPH calculation. When the amount of mass in the molecular phase in a particle

reaches the resolution limit of the simulation a seperate ‘sticky particle’, representing

many sub-resolution molecular clouds is created. This process decouples the molecular

clouds from the associated ambient phase. Since we cannot resolve the individual molec-

ular clouds in each sticky particle we work with the mass function of clouds. Initially we

assume that the molecular clouds formed through instability are all in the smallest mass
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bin, that is that the clouds formed by thermal instability are very small, and will interact

to form more massive clouds. In the following section we describe the behaviour and

evolution of the sticky particles in the simulation.

3.2.2 Cloud Coagulation and GMC Formation

Molecular clouds are typically many orders of magnitude more dense than the medium

they form in (MO77), and their behaviour is governed by a different set of rules than the

ambient medium. This section describes the physics of the simplified molecular clouds

in the sticky particle model and how it is implemented.

Relevant Physics

We assume that clouds may be treated as approximately spherical objects that obey a

power law relation between mass (Mc) and radius (rc)

rc =
( Mc

Mref

)αc

rref

= 36
( Mc

105M�

)0.3
pc . (3.5)

Here, αc describes how clouds grow as mass is added to them (if they remain at con-

stant density then αc = 1/3), and Mref and rref are a reference mass and radius used to

fix the normalisation of this relation. The example phyical values used in this equation

are discussed fully in section 3.3.1. The lower bound on molecular cloud masses is typ-

ically calculated to be 100M� (Monaco (2004)) due to the efficient destruction of smaller

molecular clouds by photoionization. We introduce an upper limit by converting molec-

ular clouds with large masses into stars (see section 3.2.5 for discussion). In order to

facilitate easy estimates of the relative importance of various effects we have substituted

typical numbers and units into most of the equations in this section.

Numerical Implementation

Each sticky particle represents numerous cold clouds. Sticky particles are hydrodynami-

cally decoupled from the ambient SPH phase of the gas and interact only gravitationally

with the other phases in the simulation. However, when two sticky particles collide they

may coagulate to form a more massive sticky particle. The mass of the smallest molecu-

lar clouds is typically orders of magnitude below the mass resolution in a cosmological

simulation. We represent an entire mass spectrum of clouds statistically inside of each
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sticky particle. Our formalism to treat the evolution of the mass function of clouds inter-

nal to each of the ’multiple cloud’ particles will start from the Smoluchowski equation of

kinetic aggregation (Smoluchowski (1916)), which describes the behaviour of a system

consisting of ballistic particles that can interact via mergers. The coagulation behaviour

of this system is driven by a coagulation kernel,K(m1,m2), that represents the formation

rate of clouds of masses m = m1 +m2,

K = 〈Σvapp〉v, (3.6)

where vapp is the relative velocity of the clouds and Σ is the collision cross section. For

a Maxwellian distribution of velocities with three-dimensional dispersion σ we have

〈vapp〉 = 1.3σ (Monaco (2004)). The product of the approach velocity and the collision

cross section is averaged over the distribution of relative velocities. The cross section is

Σ ≈ π(rc + r′c)
2
(
1 + 2G

Mc +M ′
c

rc + r′c

1

v2
app

)
, (3.7)

where the first term represents the collision geometric cross section and the second term

represents the effect of gravitational focusing (Saslaw (1985)). The focused term becomes

significant when the approach velocity is not much larger than the internal velocity dis-

persion of the system. In most cases of interest the geometric term will dominate so

the focused term is neglected. In these calculations we need to assume that molecular

clouds, although transient and turbulent, are stable for long enough for coagulation to

take place. This is reasonable because the cloud velocity dispersion is typically larger

than the sound speed of the cold cloud gas (Monaco (2004)).

To model the cooling of sub-resolution molecular clouds via gravitational interaction

it has been assumed that when molecular clouds with relative velocities, vapp, greater

than vstick (a parameter in our simulations) collide they do not merge, but rather bounce

back with relative velocity a fraction, η, of the initial approach velocity. Clouds with

relative velocities less than vstick merge. For simplicity it has been assumed that the

velocity distribution of clouds is Gaussian with a velocity dispersion that is a function of

cloud mass, σ = σ(m).

The upper and lower bounds on the molecular cloud mass function are set such that

the smallest mass bin is comparable with the smallest observable clouds, and the largest

molecular clouds are approximately the same mass as the largest clouds in the MW. The

mass function is discrete. All clouds are assumed to form at the lowest mass, Mmin,
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and then the mass of each bin is a multiple of this value. This discrete mass function is

neccessary when working with the Smoluchowski equation.

In order for us to be able to hold a mass function with a large number of bins internal

to every single sticky particle without the requirement to store one number for each mass

bin we parameterize the mass function as a third order polynomial, and store only the

four coefficients between timesteps.

As these sub-resolution clouds interact and merge, the one dimensional velocity dis-

persion σ(m) changes, which affects the rate of evolution of the cloud mass function,

n(m). Let Em = (3/2)mσ2(m) denote the random kinetic energy of clouds with mass m.

Em may change due to three distinct processes:

• Clouds with masses m′ and m−m′ merge to form extra clouds of mass m, increas-

ing Em at a rate Ėgain

• Clouds with masses m may merge with clouds of any other mass decreasing the

number of clouds of mass m. This process decreases Em at a rate Ėloss

• Clouds with mass m may interact collisionally with clouds of any other mass and

so lose kinetic energy. This process decreases Em at a rate Ėcool

The net change in kinetic energy for particles of mass m during some timestep ∆t is

given by

∆Em =
dEm

dt
∆t =

[
Ėgain − Ėloss − Ėcool

]
∆t . (3.8)

And for this change in kinetic energy, the corresponding change in velocity dispersion is

given by

σ̇ =
2Ė − Ṁσ2

2Mσ
. (3.9)

Details of the equations used to model these processes are given in Appendix 3.2.3, and

the method by which they are solved numerically in Appendix 3.2.4.

The same processes (cooling and merging) are followed explicitly for the individual

sticky particles in our simulations, which can interact in the same two ways as the unre-

solved sub resolution clouds. Following the same rules should allow us to remove much

of the resolution dependence of the star formation. As the mass resolution of a simu-

lation is degraded, more massive clouds will be treated with the sub-grid physics; our

implementation should ensure that the large scale results are approximately the same.

This is demonstrated in section 3.3.1.
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3.2.3 Energy Transfer Through Coagulation

In this section the numerical methods by which the equations governing molecular cloud

behaviour are discussed in detail. The starting point is the Smoluchowski equation of

kinetic aggregation (Smoluchowski (1916))

∂n

∂t
=

1

2V

∫ ∞

0
n(m′, t)n(m−m′, t)K(m′,m−m′)dm′

− 1

V
n(m, t)

∫ ∞

0
n(m′, t)K(m,m′)dm′, (3.10)

where n(m, t) represents the number of clouds with masses between m and m + dm

contained within a volume, V and K(m,m′) represents the kernel for aggregation of

clouds with masses m and m′, as defined by Eq (3.6)

In one dimension, the fraction of collisions between clouds of massesm1 andm2 that

lead to mergers is given by

fm(σ1, σ2) =
1

σ1

√
2π

∫ ∞

−∞
e
−

(
v1√
2σ1

)2[
erf
(v1 + vstick√

2σ2

)
− erf

(v1 − vstick√
2σ2

)]
dv1 . (3.11)

Figure 3.2 shows for two populations of particles with different velocity dispersions

the fraction of collisions that will lead to a merger, this demonstrates the symmetry be-

tween σ1 and σ2 in equation 3.11. Using this definition of fm the Smoluchowski equation

becomes

∂n

∂t
=

1

2V

∫ ∞

0
n(m′, t)n(m−m′, t)K(m′,m−m′)fm(σm′ , σm−m′)dm′

−n(m, t)

V

∫ ∞

0
n(m′, t)K(m,m′)fm(σm, σm′)dm′ . (3.12)

As discussed in section 3.2.2, clouds of mass m may gain or lose kinetic energy in

three ways: clouds of mass m′ and m −m′ may merge to form extra clouds of mass m.

Clouds of mass m may merge with clouds of any other mass to decrease the number

of clouds of mass m. Finally clouds of mass m can interact gravitationally with any

other clouds, thus losing kinetic energy. These three processes are termed gain, loss and

cooling.

Gain processes may be represented in the following way, where we have integrated

over m′ such that the two particles that merge have masses that sum to m

Ėgain =

∫ ∞

0

∫ v1=∞

v1=−∞

∫ v2=v1+vstick

v2=v1−vstick

[
P (v1)P (v2)n(m′, t)

n(m−m′, t)K(m′,m−m′)fm(m′,m−m′)Ef

]
dv2dv1dm

′ . (3.13)
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Figure 3.2: The merging fraction as a function of σ1 and σ2. White repre-

sents a merging fraction of 1.0, dark blues represent low merging frac-

tions. The solid black lines show merging fractions of 0.75, 0.5 and 0.25.
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P (v1) and P (v2) are the probability distributions velocities v1 and v2 and are assumed

to be gaussian with standard deviation σ1 and σ2 respectively. Ef represents the final

kinetic energy of a collision between particles of masses m′ and m−m′. Ef is evaluated

by considering conservation of momentum,

Ef =
1

2

(m′v1 + (m−m′)v2)
2

m
. (3.14)

Eq (3.13) then becomes

Ėgain =
n(m′, t)

2π

∫ ∞

0
n(m−m′, t)K(m′,m−m′)

∫ ∞

−∞

∫ v1+vstick

v1−vstick

1

σm′σm−m′
e
−

(
v1√
2σ

m′

)2

e
−

(
v2√

2σ
m−m′

)2

1

2

((m′v1 + (m−m′)v2)
2

m

)
dv2dv1dm

′ , (3.15)

and Eq (3.15) may be written

Ėgain =
n(m′, t)

2π

∫ ∞

0
n(m−m′, t)K(m′,m−m′)

∫ ∞

−∞

1

σm′σm−m′
e
−

(
v1√
2σ

m′

)2

∫ v1+vstick

v1−vstick

e
−

(
v2√

2σ
m−m′

)2

1

2

((m′v1 + (m−m′)v2)
2

m

)
dv2dv1dm

′ (3.16)

The total kinetic energy of particles of mass m may also be decreased by mergers

between particles of massm and any other mass (the second process in the list). Similarly

to Eq (3.15), the rate of energy loss may be written

Ėloss =
n(m, t)

2π

∫ ∞

0
n(m′, t)K(m,m′)

∫ ∞

−∞

1

σmσm′
e
−

(
v1√
2σm

)

∫ v1+vstick

v1−vstick

e
−

(
v2√
2σ

m′

)2

mv2
1

2
dv2dv1dm

′ . (3.17)

Finally, the total energy of particles with massmmay be decreased by collisions between

particles of massm and particles of any other mass that occur at relative velocities greater

than vstick. In this case, the velocity of both particles is decreased by a factor η relative

to the centre of mass. For a collision between particles of masses m1 and m2 (velocities

v1 and v2) the final velocity of particle 1 (denoted v ′1) is evaluated by conservation of

momentum

v′1 = η(v1 − vcom) + vcom

vcom =
m1v1 +m2v2
m1 +m2
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∆E =
1

2
m1v

′2
1 − 1

2
m1v

2
1 , (3.18)

Using these definitions, the change in energy of a particle of mass m1 by gravitational

cooling with a particle of mass m2, denoted ε is given by

ε =
m1

2

[
v2
1(1 − α2) − v2

2β
2 − v1v2αβ

]
, (3.19)

where

α = η +
m1

m1 +m2
(1 − η) (3.20)

β =
m2

m1 +m2
(1 − η) . (3.21)

In a similar way to Eq (3.15) the energy loss via this process may be written

Ėcool =
n(m, t)

2π

∫ ∞

0
n(m′, t)K(m,m′)

∫ ∞

−∞

1

σmσm′
e
−

(
v1√
2σm

)2 ∫ |v1−v2|>vstick

εe
−

(
v2√
2σ

m′

)2

dv2dv1dm
′ . (3.22)

3.2.4 The Solution of the Coagulation Equations

In our simulations we solve the discrete versions of Eq (3.12), Eq (3.8) and Eq (3.9). By

assuming that cloud mass is quantised into N bins characterised by an index, i, where

Mi = iM0 we can write

ṅk =
1

2V

∑

i+j=k

Kijf
m
ij ninj −

nk

V

jmax∑

j=1

Kjkf
m
ij nj , (3.23)

Ėk = Ėgain − Ėloss − Ėcool, (3.24)

σ̇k =
Ėk − 1

2σ
2
kMkṅk

σknkMk
, (3.25)

where subscripts represent different mass bins. Kij ≡ K(Mi,Mj) ≡ K(iM0, kM0).

The superscript m represents that f is a cross section for particle mergers

To demonstrate the technique for solving these equations we will consider the nu-

merical solution of the simple Smoluchowski equation (Eq (3.10)), which when written

in a discrete form takes on the following form

ṅi =
1

2V

i−1∑

j=1

njni−jKij −
ni

V

N∑

j=1

njKij . (3.26)
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Following Benson et al. (2005) Eq (3.26) can be rewritten in the form of a matrix equation

ṅ = B · k, (3.27)

the vector k has N ×N elements corresponding to K(mi,mj). The kernel matrix, B has

N ×N ×N elements and may be written more explicitly as

ṅi =
∑

jk

Bijkkjk, (3.28)

where

Bijk =
njnk

V

(1

2
δi,j+k − δik

)
(3.29)

δ represents a Kronecker delta function. We solve Eq (3.27) implicitly using an iterative

method.

The solution of the equations that govern energy exchange between clouds (Eq (3.16),

Eq (3.17) and Eq (3.22)) is the same as for the solution of the Smoluchowski equation

in that we will write the equations in the form of the linear multiplication of two ma-

trices and then solve this equation implicitly. In order to simplify the notation in this

section we will denote the terms in the three equations that are inside of the integrals

over velocity as ξ. Explicitly for the case of the equation for energy gain (Eq (3.16)):

ξG(m,m′) =
1

2π

∫ ∞

−∞

1

σmσm′
e
−

(
v1√
2σm

)2

∫ v1+vstick

v1−vstick

1

2
e
−

(
v2√
2σ

m′

)2((mv1 +m′v2)
2

m

)
dv2dv1 (3.30)

The corresponding terms in the equations for energy loss(3.17) and cooling (3.22) are

denoted ξL(m1,m2) and ξC(m1,m2) respectively. Note that the definitions of ξ include

the factors of 2π and 1
σ from throughout the equations.

The equation for the total evolution of the energy of a system of coagulating and

cooling particles may be written in terms of these new functions as:

Ė(m) =

∫ ∞

0
n(m′, t)n(m−m′, t)K(m′,m−m′)ξG(m′,m−m′)dm′

− n(m, t)

∫ ∞

0
n(m′, t)K(m,m′)ξL(m,m′)dm′

− n(m, t)

∫ ∞

0
n(m′, t)K(m,m′)ξC(m,m′)dm′ (3.31)

Which when discretized and rearranged becomes

Ėi =

i−1∑

j=1

ninjKijξ
G
ij − ni

( N∑

j=1

njKij

(
ξC
ij + ξL

ij

))
(3.32)



3. Statistical Models of the Interstellar Medium 102

The subscripts represent different mass bins (nj ≡ n(jM0)). Our goal is to rewrite Eq

(3.32) in the form of a linear multiplication of two matrices

Ė = C · k, (3.33)

where k is defined in the same way in the solution of the Smoluchowski equation, that

is: kij ≡ K(mi,mj). The form of Cijk that is consistent with Eq (3.32) is given by:

Cijk = njnk

(
δi,j+kξ

G
jk − δik

(
ξC
jk + ξL

jk

))
(3.34)

This form for Cijk is functionally equivalent to Bijk (Eq (3.29)) so the solution may

proceed in exactly the same way as for the Smoluchowski equation, the only difference

is the form of the matrix B

The calculation of the quantities ξG, ξC and ξL is computationally very expensive so

they are initialised once into a lookup table at the start of every simulation and obtained

by bilinear interpolation thereafter

3.2.5 Cloud Collapse and Star Formation

The vast majority of stars form in Giant Molecular Clouds. This process is described in

the sticky particle model by allowing the most massive clouds in the galaxy to collapse

into stars.

Relevant Physics

We follow the process of star formation in our simulations by waiting for star forming

clouds to be created by the coagulation process described in section 3.2.2. We define star

forming clouds to be clouds of a mass similar to the most massive clouds observed in

the MW (∼ 106M�). When one of these star forming clouds is created it is assumed to

collapse on a short timescale and approximately ε? ∼ 10% of its mass is converted into

stars, whilst the remainder is disrupted by stellar feedback processes including stellar

winds, SN feedback and photoionization. This process reflects that although stars may

form in less massive molecular clouds, it is not until the relatively rare, massive O and B

stars are created that the cloud is destroyed (Elmegreen (1983)).

We assume that each cloud collapse forms a single stellar population with an IMF of

the standard Salpeter (1955) form

N(M) dM ∝M−(1+x)dM , (3.35)



3. Statistical Models of the Interstellar Medium 103

where x is the slope of the IMF and takes the usual value of 1.35. The masses of stars

are assumed to lie between well defined minimum and maximum values, M?,min and

M?,max.

Numerical Implementation

The treatment of star formation adopted in most simulations is to identify gas that is

likely to be star-forming and impose a star formation rate given by the Schmidt law,

ρ̇? = CρNSF
gas . (3.36)

Here, ρ̇? and ρgas denote the rate of star formation per unit volume and the gas density

respectively. This power law relation between star formation rate (SFR) and gas density

was found to hold over many orders of magnitude by Kennicutt (1988), who constrained

the exponent to be NSF = 1.4 ± 0.2.

We take a different approach: unstable molecular clouds are identified in the simu-

lations as any cloud with a mass greater than Msf . We identify the formation of these

massive clouds by using the cloud mass function, as stored internally to every single

sticky particle. These unstable clouds are assumed to collapse on a very short timescale,

forming stars.

As soon as a cloud of mass Msf forms, it is assumed to be disrupted by OB stars on a

timescale of ∼10Myr (Matzner (2002)), the rest of the massive cloud is broken down into

smaller clouds and the coagulation process begins all over again as described in section

3.2.2. This process is modelled by taking the fraction of the cloud’s mass that does not

turn into stars, 1− ε∗, and assuming that the net effect of the stellar feedback processes is

to fragment the GMC into the smallest clouds represented in the sticky particle internal

mass function. This has the net effect of steepening the cloud mass function.

Each star particle formation event represents the formation of a single stellar pop-

ulation of stars that are all assumed to have the same age, and to be drawn from the

Salpeter IMF. Each stellar particle is therefore formed with a mass approximately equal

to ε∗ times the mass of a starforming cloud. If this particle mass is not allowed by the

mass resolution of a given simulation then we either store up unresolved stars internal

to a sticky particle (if the star mass is too small to be allowed), or split it into multiple,

equal mass particles (if the star mass is too large to be allowed).
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3.2.6 Supernova Feedback

Our simulations include only energy feedback from type II SN. These events return en-

ergy from the stars to the ambient phase. We note that it is not currently computationally

feasible to resolve the properties of SN remnants so we treat them with a simple, ana-

lytic prescription. The mechanism by which SN feedback is implemented in our model

is discussed here.

Relevant Physics

Each star of mass greater than 8M� releases 1051E51 ergs in thermal energy when it

undergoes a SN event. The lifetime, t, of a star of mass M (where M > 6.6M�) is given

by (Padovani and Matteucci (1993))
t

Gyr
= 1.2

( M
M�

)−1.85
+ 0.003 . (3.37)

Each SN explosion can be approximated as the injection of energy at a single point

in space. If we assume that the ambient density on scales of interest is approximately

homogeneous, with density ρh, then each SN explosion can be modelled as a Sedov blast

wave (Sedov (1959)). According to this solution, if at time t = 0 we release an amount of

energy Eb, then after time t the resulting blast wave will have reached a radius rb given

by

rb =
(Eb

ρh

)1/5
t2/5

= 292
(Eb/10

51ergs

ρh/0.1 cm−3

)1/5
(t/10Myr)2/5 pc . (3.38)

These hot SN bubbles have two main effects. Firstly, as they expand and decelerate

the SN heated gas will get mixed in with the surrounding ambient medium; the net

result of this process is the heating of the ambient medium. Secondly, as discussed in

section 3.2.7, any cold clouds caught inside a SN bubble will undergo evaporation.

There are two main assumptions that must hold for the Sedov solution to be valid,

the pressure of the ambient medium, and the cooling rate inside the bubble, must both

be negligible. Often at least one these assumptions is invalid. If the ambient medium

has a low density and is very hot, for example due to a previous set of explosions, then

its pressure is no longer negligible and the Sedov solution breaks down. If the ambient

medium is dense then radiative cooling becomes an important process. In the remainder

of this section we describe various modifications to the standard Sedov solutions, which

allow us to model SN remnants in a wider variety of conditions.
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In the case of a hot, tenuous medium the radius of each blast wave is increased (Tang

and Wang (2005)). These authors derive a fitting formula for the velocity of a SN blast in

a hot medium, which is accurate to within 3%

rb(t) =

∫ t

0
ch

( tc
t′

+ 1
)3/5

dt′ , (3.39)

= 156

∫ t/Myr

0

( tc
t′

+ 1
)3/5

dt′ pc, (3.40)

where ch is the sound speed of the ambient medium. We assumed a temperature of

Th = 106K, mean molecular weight of µ = 0.58, blast wave energy of 1 × 1051 ergs and

an ambient density of 0.1 atoms per cm3 in order to illustrate the order of magnitude of

rb. tc is a characteristic time,

tc =

[(2

5
ξ
)5 Eb

ρhc
5
h

]1/3

= 0.012

[
(ξ/1.14)5

Eb/10
51erg

(ρh/0.1 cm−3)(Th/106K)5/2

]1/3

Myr .

(3.41)

where ξ equals 1.14 for a gas with adiabatic index γ = 5/3. This solution matches the

standard Sedov evolution, rb ∝ t2/5, closely until t ∼ tc, after which the shell’s velocity

becomes constant, rb ∝ t. This modification allows us to take into account that the major-

ity (∼90%) of SNII happen in preheated SN bubbles (Higdon et al. (1998)) and, therefore,

the approximation that the pressure of the ambient medium is negligible is often incor-

rect. Fig (3.3) shows the difference between an adiabatic gas SPH simulation of a SN

induced shock-wave, the pure Sedov solution and the blast wave radius as predicted by

the hot medium-modified Sedov solution from Tang & Wang (2005).

Situations where radiative cooling are important may be taken into account using

the prescription of Thornton et al. (1998), whose high resolution simulations of SN ex-

plosions expanding in an ambient medium with temperature Th = 103K, provide the

total thermal energy in SN bubbles as a function of time, ambient density and metallic-

ity. We perform bilinear interpolation on the results in tables 2 and 4 of Thornton et al.

(1998) to obtain the SN bubble radius and thermal energy at any given time.

Neither of these solutions treats the more general case of SN remnant expansion in a

porous ISM, which may have regions of both high and low ambient density, and so we

are not able to include the effects of SNe in a fully self-consistent manner. In most of our

simulations we use the simple Sedov solution for the evolution of the SN blast waves, but
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Figure 3.3: Comparison between SPH simulation of a Sedov blast, the

Sedov solution and the hot medium correction of Tang & Wang (2005).

The points represent individual SPH particles, the dashed line is the

Sedov solution and the dotted line is the blast wave radius as calculated

with the hot medium correction. The initial condition had a density of

0.001 atoms per cm3 and a temperature of 106K. 1051ergs were injected

to the central 32 particles at t0. This plot was made after the blast wave

had evolved for 0.3 Myr.
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note that the details of our prescription are uncertain. In section 4.4 we investigate the

effects of using different implementations of the physics of SN blast waves to estimate

how important the details of the behaviour of SN remnants are to the overall properties

of the galaxy. Both the radiative cooling and blast wave velocity physics are varied.

Numerical Implementation

By assuming that each stellar particle in the simulation represents an entire population

with the same age we can calculate the minimum and maximum masses of stars that

undergo supernova events over any given time period using Eq (3.37). Each of these

supernovae is assumed to go off in a neighbouring gas particle (i.e. one for which the

distance, r, to the star is smaller than its smoothing length, h, in the SPH formalism).

We chose this particle randomly from the neighbours, with a weight computed from the

solid angle, Ω, it subtends on the sky as seen from the position of the star particle,

Ω = 2π
(
1 − r√

(r2 + h2)

)
. (3.42)

This weighting forces that nearby hot, diffuse gas (which tends to have larger h, hence

larger weight) is heated more frequently than cooler, denser parts of the ambient medium

(which are dense, hence have smaller h).

We do not transfer all SN energy to gas particles each timestep. Assuming that SN

explosions are distributed evenly in time and space we can calculate for every ambient

gas particle a ‘porosity’ of SN bubbles, Q = VB/VA. For the volume associated with a

gas particle we use VA = (4π/3)h3 , and VB = (4π/3)
∑
r3b is the total volume of all the

SN bubbles in this particle. WhenQ is greater than a critical value, Qcrit ≈ 1, the ambient

phase is heated, else the available SN energy is carried over to the next time step. This

ensures that the ambient phase is only heated when hot supernova bubbles make up a

significant fraction of the volume. There are two motivations for this, firstly a given SPH

particle cannot represent more than one phase at a given time. Secondly simulations

usually do not limit the timestep to be a fraction of the cooling time. Consider a warm,

T ∼ 104K, SPH particle in the disk. If a small amount of SN energy is injected into this

dense particle, it will cool very efficiently since the cooling rate is very high. It is only

when the particle is heated to T � 106K that the reduced cooling may affect the particle

dynamically, so that it will move into lower density gas, further decreasing its cooling

rate, and becoming part of the hot, tenuous gas. Storing the available heating until the

SN bubbles fill a significant fraction of the particle is a way of easing the transition from



3. Statistical Models of the Interstellar Medium 108

warm to hot and makes the outcome less dependent on the timestep.

To determine the porosity Q, we need to know the current radii, rb, of SN bubbles.

The radius rb depends on the ambient gas properties and also on the available energy,

Eb, as discussed in section 3.2.6. Typically a single stellar particle will undergo mul-

tiple SN events over a single timestep. Using Eqs. (3.37) and (3.38) and obtaining the

SPH estimate of the ambient gas density at the position of the star particle we can esti-

mate the average radius of all supernova bubbles blown by a given star particle at any

time. Working under the assumption that the porosity of the ISM is low we calculate

the radiative loss from each bubble separately. When the porosity of the ISM becomes

Q > Qcrit ∼ 1, the SN bubbles are overlapping significantly and all coherent structure is

assumed to be wiped out. The ambient gas particles are heated by the remaining thermal

energy in the supernova bubbles and they are considered to disperse. The porosity is set

back to zero. Note that using the Sedov solution implies we neglect radiative cooling in

the remnants to determine the porosity, Q. However to determine how much energy is

in the bubbles once we decide to heat the particle, we do use the tables of Thornton et al.

(1998) to account for radiative cooling in the SN shells. We believe that even though this

treatment is not fully consistent, it does capture the main physics.

3.2.7 Thermal Conduction

Thermal conduction between the ambient and cold gas in the simulation is an important

ingredient in the self-regulation of the star formation rate in our model of the ISM.

Relevant Physics

Thermal conduction has two primary effects. The first is to smooth out the tempera-

ture and density profiles inside SN remnants. In the strong explosion solution of Se-

dov, where thermal conduction is neglected, the temperature of the blast wave increases

sharply towards the centre of the blast. This is due to the fact that the gas near the origin

was heated by a stronger shock than that at the edges and thereafter evolves adiabat-

ically. The effect of thermal conduction is to efficiently transport heat from the centre

of the blast to the outer cool regions. The temperature of the interior of the super-

nova blast, Tb, is then approximately constant and equal to the mean temperature of

the blast(Chevalier (1975); MO77):
( Tb

108K

)
= 1.2

( rb
10pc

)−3
(

nb

0.1 cm−3
)−1(

Eb

1051erg
) , (3.43)
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where nb and Tb are the mean density and temperature inside the bubble, respectively.

We assume rb to be described by Sedov’s self-similar solution. The density nb is also

approximately constant and is given in terms of the ambient density, nh, as

nb

nh
=1 + x−5/3 (3.44)

x ≡0.65
( rb

10pc

)
Σ1/5

con(
nh

cm−3
)3/5(

Eb

1051erg
)−2/5 . (3.45)

The dimensionless number Σcon represents the effectiveness of evaporation,

Σcon =
αcon

3

( rc
pc

)2
f−1
cl φ

−1, (3.46)

(McKee and Cowie (1977)), and depends on αcon = ṙb/ch (the ratio of the velocity of

the supernova blast wave to the sound speed of the medium), the cloud’s radius, rc, the

volume filling factor of the cold clouds, fcl, and the efficiency of thermal conduction,

φ (see MO77 for details). For a pure Sedov blast wave αcon = 1.68. The presence of

magnetic fields and turbulence may decrease φ below its maximum value of φ = 1.

We compute fcl for each sticky particle from its current cloud mass spectrum given the

assumed cloud mass-radius relation, Eq. (3.5).

The second effect of thermal conduction is to evaporate cold clouds. According to

(McKee and Cowie (1977); Cowie (1977)), the evaporation rate is well described by:

( Ṁc

M�Myr−1

)
= −0.44 ×

( T

106K

)5/2( rc
pc

)
. (3.47)

Numerical Implementation

Since we store the mass function of molecular clouds internal to each sticky particle

explicitly (Sect. 3.2.2), we can apply Eq. (3.47) along with Eq. (3.5) to each cloud mass bin

to calculate the total mass loss of a cloud over one timestep. The evaporation rate of the

cloud depends on the temperature of the ambient gas, which is represented with SPH

particles. However, as we discussed above, some fraction Q of the volume of each SPH

particle may be filled by hot SN bubbles, in which the evaporation rate of clouds may be

much higher. Since we have computedQ, we can take this important effect into account.

Consider a single molecular cloud in thermal contact with an ambient medium of

(constant) temperature T . The mass of a cloud at the end of a timestep (Mf ) is related to

its mass at the start of the timestep (Mi) by:

Mf =
[
M1−αc

i − (1 − αc)
0.44T 5/2rref

Mαc

ref

∆t
]1/(1−αc)

, (3.48)
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where T is in units of 106K, masses are in M�, lengths are in pc and times are in Myr.

Eq (3.48) represents the mass loss rate for a single cloud in contact with a medium

of temperature T . More generally in a porous medium a single cloud of mass m has a

mean mass loss rate described by:

Ṁcloud = −QṀbubble − (1 −Q)Ṁambient, (3.49)

where ṁbubble and ṁambient represent the rate of mass loss for a cloud inside a supernova

bubble and situated in the ambient medium respectively.

Eq. (3.48) can be applied directly to the evaporation of a cloud in the local ambient

medium (ṁambient). However to apply the same formula to the evaporation of clouds in-

side of supernova bubbles we need to account for the fact that although the temperature

inside the bubbles remains uniform, due to conduction, it is not constant in time, but

decreases as the bubble expands. We therefore make the additional assumption that the

mean temperature of the supernova remnant is constant over a timestep (a good approx-

imation after a short transient phase). Under this assumption Eq. (3.48) can be applied

successfully to the more general case of evaporation in a porous medium. Eq (3.47) and

Eq (3.5) are used to show that the total mass loss rate for clouds of mass m in a volume

VA is given by

( Ṁ

M�Myr−1

)
= −0.44

(Mc

M�

)α

c

(rref

pc

)(Mref

M�

)−αc

(
Q
( Tb

106K

)5/2
+ (1 −Q)

( Ta

106K

)5/2
)
.

(3.50)

Under the assumption that Tb, the mean temperature of supernova remnants, and Ta,

the mean ambient temperature, are constant over any single timestep we can write

( Ṁ

M�Myr−1

)
≡ λ

( M
M�

)αc

, (3.51)

In order to calculate the constant of proportionality, λ, we use an estimate of the mean

temperature and density inside of a supernova remnant. These estimates were obtained

by noting that by definition Q ≡ VB/VA. (VB and VA represent the total volume in

bubbles and the ambient phase respectively). The mean radius of a supernova remnant

is then

rb =
( 3QVA

4πNSN

)1/3
, (3.52)

where NSN is the total number of supernova explosions that have affected the local am-

bient medium (calculated from equations 3.37 and 3.35). The mean density inside the
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Figure 3.4: Evolution of a population of molecular clouds as they are

evaporated by a hot ambient medium. The initial cloud mass function

is a power law. The temperature of the ambient medium is assumed to

be 105K, the porosity of the medium is assumed to remain constant at

0.2, and the temperature of the supernova remnants is ≈ 106K. Thermal

conduction acts to preferentially destroy the smaller clouds.

supernova remnants, nb, may then be calculated from Eq (3.44) and Eq (3.45) and the

mean temperature from Eq (3.43).

Over a period of time ∆t a cloud with massMI will evaporate to a mass ofMF , given

by:

MF =
(
M

(1−αc)
I − λ∆t

)1/(1−αc)
(3.53)

Thermal conduction efficiently destroys smaller clouds, but its effects are far less

dramatic on larger clouds. Fig (3.4) shows the evolution of an initially power law mass

spectrum of clouds in a hot medium. The energy used to evaporate a mass MF −MI of

cold clouds is removed from the supernova remnants.
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3.2.8 Mass Resolution Limits

The sticky particle model allows particles of all types to change their mass via processes

including merging, thermal conduction and star formation. For this reason it is neces-

sary for us to introduce numerical minimum and maximum masses on all particle types.

We define at the initial time a characteristic mass resolution for our simulation, Mchar,

typically this is set equal to the mass of the ambient gas particles in the initial conditions.

Where more than one mass of ambient particles is present (for example in the model

galaxies discussed in section 4.1) we use the mass of the gas particles that will be form-

ing most stars. We then define minimum and maximum particle masses relative to this

characteristic mass scale.

Ambient gas particles may have their mass decreased by the formation of molecular

clouds. If the total mass of a gas particle becomes less than 0.1Mchar then it is converted

entirely into a cloud particle. The ambient gas particles may also have their mass in-

creased by the process of thermal conduction. If a gas particle becomes more massive

than 4Mchar then it is not allowed to grow any more, and the evaporated cloud mass is

given to a different particle. In practice this limit is rarely, if ever, reached as evaporat-

ing cold clouds effectively cools the ambient gas particles so they become inefficient at

thermal conduction.

Sticky particles may decrease their mass by star formation and evaporation. If the

mass of a sticky particle drops below 0.1Mchar then it is either completely evaporated or

completely converted into stars. Coagulation may drive the mass of a sticky particle to

be very large. In practice this is not a real concern since when a sticky particle becomes

very massive the rate at which its internal clouds coagulate also increases, causing it to

form stars very rapidly.

Stars have a maximum and minimum mass of 4Mchar and 0.1Mchar. If a star forms

with a mass greater than the maximum allowed mass it is split into a number of smaller

star particles. A sticky particle may not form a star with a mass lower than the minimum

allowed mass. In this eventuality then the mass of the ‘unresolved’ stars is tracked

internally by the sticky particle and added into the next star formation event until the

total mass of stars formed reaches the resolution limit of the simulation.

These particle mass limits keep all particle masses in the range 0.1Mchar to 4Mchar,

which both minimises two body effects between very massive and very small particles

and also prevents the formation of very many low mass particles, which are computa-
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tionally very expensive to evolve.

3.3 Parameter Estimation

The various physical processes in the star formation and feedback models each have

associated with them physical parameters. Before we discuss the properties of our model

in detail we discuss how its free parameters can be constrained.

The free parameters that control the thermal instability and formation of the molec-

ular clouds are ρth and Tth, the physical density and temperature at which thermal in-

stability is allowed to set in and radiative cooling creates molecular clouds. Wolfire et al.

(1995) found that a diffuse ISM naturally settles into two stable phases, with a sharp

cutoff between the ambient and molecular phases at a density of approximately 1 atom

per cm3. We use this as the value of ρth. A threshold temperature Tth = 105K allows the

gas in galaxies which cools radiatively to ∼ 104K to collapse into clouds but prevents

supernova heated material (typically at temperatures of 106K) from forming molecular

clouds until it has radiated away most of its supernova energy.

The properties of the molecular clouds themselves are contained in four parameters:

rref , Mref , and αc as defined in Eq (3.5) and uc, the internal energy per unit mass of

molecular clouds. The first three values are set by comparison with observations of

molecular clouds in the nearby galaxy M33 (Wilson and Scoville (1990)):

( rc
pc

)
= (36 ± 6)

( M

105M�

)0.3±0.1
(3.54)

Thus rref and Mref are assumed to be 36pc and 105M� respectively. This calibration (and

an assumed αc of 0.3) suggest a radius of 122± 6pc for the largest clouds observed in the

MW ( 6 × 106M� (Williams and McKee (1997)).

The properties of the stars and associated feedback are contained within four param-

eters: x, the slope of the IMF;E51, the energy of each supernova blast in units of 1051erg;

M?,min, the minimum star mass; and M?,max, the mass of the largest allowed stars. For

E51 we use the fiducial value of 1.0 noting, however, that the value of E51 is very un-

certain and may be significantly higher. The effects of varying E51 are investigated in

section 4.4. For the purposes of this work uncertainties in the IMF are neglected and x

is assumed to take on the standard Salpeter value of 1.35. We follow Kawata and Gib-

son (2003) in adopting values 0.2M� and 60M� for the minimum and maximum stellar

masses, respectively.
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The star formation efficiency in a single cloud collapse is also somewhat uncertain

and is known to be approximately ε? ≈ 11% (Williams and McKee (1997)) in the MW.

The thermal conduction efficiency is characterised by two numbers: αcon, the ratio of

the blast wave velocity to the ambient sound speed and φ, the efficiency of thermal con-

duction. Following MO77, the value of αcon is set to 2.5 (for the ideal Sedov blast wave

case, αcon is 1.68, the presence of thermal conduction changes this value). The thermal

conduction efficiency parameter is assumed to be φ = 1. The presence of magnetic fields

and turbulence may change φ significantly; we investigate the effect of moving away

from this value in Sect. 4.4

This leaves vstick (the maximum relative cloud velocity for mergers) and η (the frac-

tion of a cloud’s velocity lost per non-merger collision) as free parameters that are hard

to constrain via observation. It is noted that the large scale behaviour of a given simu-

lation is largely independent of the value of η. This is because the cold cloud velocity

dispersion is always limited by vstick. In the following section simple simulations are

used in order to calibrate the properties of the physical model.

3.3.1 One Zone Simulations

Simulation Details

A ‘one zone model’ is a periodic box that represents a fixed mass and volume (i.e.

a static, periodic box with no mass outflow). The ambient ISM phase is assumed to

be homogeneous. Initially, for a chosen mean density of matter we assume that 50%

of the material is initially in the hot phase at a temperature of T0 = 106K. The re-

maining gas is initially in cold clouds with an initial mass function that is a very steep

(N(M)dM ∝ M−8dM ) power law. Numerically we represent the different phases as

follows: the ambient phase is assumed to be homogeneous and isotropic and so is rep-

resented by a single density and temperature throughout the whole periodic volume,

molecular clouds are represented by discrete sticky particles that are spawned at a ran-

dom point in the computational volume with a random velocity, stars are not tracked

individually, and are assumed to heat the whole volume evenly when they undergo

SN explosions. The mass resolution of the molecular phase is approximately 107M�,

although the effects of varying this figure are investigated later in this section.

This initial situation represents hot, dense gas that has just begun to experience a

thermal instability and started forming its first molecular clouds. The volume we sim-
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Figure 3.5: Star formation rate as a function of time for a one zone box

with three different values of vstick. The initial gas density is n0 = 2

cm−3 in each case. Each curve follows the same general shape, there

is an initial delay during which the first GMCs are forming. The un-

opposed collapse of the first GMCs causes a burst of star formation,

which is quickly regulated by the effects of feedback from stellar winds

and supernova explosions. After this initial burst the star formation

rate in the simulation settles down and gradually decreases as the gas

in the box is used up.
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ulate is one cubic kpc. The hot phase will evaporate cold clouds through thermal con-

duction, and can cool via radiative processes using a simple tabulated cooling function

from Sutherland and Dopita (1993) (assuming solar metallicity). Cold cloud particles

are scattered randomly throughout the volume and given random velocities. Clouds do

not feel gravitational forces. Depending on the parameters, the ambient phase will cool

radiatively to form more molecular gas. Clouds will coagulate to form GMCs, which in

turn form stars. The associated SNe evaporate smaller clouds, and may heat the ambient

medium and quench the star formation. This sequence of events is plotted in Fig (3.5),

the same general shape is observed for each value of vstick, there is a brief delay as the

first clouds coagulate to form GMCs, these clouds then collapse and form stars, which

undergo supernovae and quench the star formation. On a longer timescale, the quiescent

star formation rate slowly decreases as the available gas is consumed by stars. Since the

dynamical equilibrium is reached on a very short timescale, typically a couple of hun-

dred Myr, we assume instantaneous recycling when considering supernova feedback.

The role of Tth is suppressed in the one zone simulations, due to the fact that energy

injected via supernovae cannot escape the volume.

The lack of self gravity does not affect the global properties of the volume signif-

icantly. From Eq (3.7) assuming typical cloud properties (Mc ≈ 105M�, r ≈ 50pc)

and a reasonable velocity dispersion (σ = 7km/s) the ratio of the geometric part of the

cross section to the gravitationally focused part is approximately 0.1, therefore direct

collisions between clouds account for the majority of the collisions and gravitational fo-

cusing makes for an effect of only 10%. In the following section we will choose a value of

vstick by comparing the star formation rates in one zone volumes with the Schmidt law,

and also look at the properties of one zone volumes.

As noted in section 3.3 the properties of the simulation are largely independent of η.

We assume a value of 0.5 throughout the rest of this thesis.

Calibrating the base model

The one zone model provides a useful sandbox in which we can investigate a wide vari-

ety of parameter choices in a relatively computationally inexpensive environment. In the

following section we discuss our choices for the values of the different parameters. The

effects of moving away from this ‘base model’ are discussed more fully in later sections.

The parameters that are available for tuning the output of the model are as follows:

the cold cloud reference size and radius (rref , Mref ); the slope of the cloud mass-radius
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Figure 3.6: Mass function of clouds after 1Gyr in a one zone model.

The dashed and dotted lines represent the slopes of the mass functions

in the MW (Solomon et al (1987))and M33 (Rosolowsky & Blitz (2004)).

The numbers in the legend represent the power law slopes in each of

the galaxies. It is clear that we obtain a good agreement between our

model and the cloud mass spectrum in real galaxies.
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Figure 3.7: Schmidt law. The diagonal dashed line represents the ob-

served star formation law (Kennicutt 1998) and the vertical line repre-

sents the observed cutoff in star formation (10M�pc−2; Schaye 2004).

Each point represents the star formation rate averaged over a period

of 500Myr for a separate one zone simulation. Data is shown for two

different values of vstick, the base value used in all subsequent simula-

tions is 7km/s. We calculate star formation rates by averaging the star

formation rate in the simulation volume over a 500Myr period. Surface

densities were calculated from volume densities by assuming a disk of

thickness of 1kpc.



3. Statistical Models of the Interstellar Medium 119

Figure 3.8: Star formation rate as a function of time for one zone models

with three different mass resolutions. The star formation rate remains

almost unchanged over two orders of magnitude in mass resolution.

The coarsest mass resolution of 109M� corresponds to the entire one-

zone system being represented with a single particle with all clouds

interactions modelled with the coagulation equations.
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Figure 3.9: Temperature and density of the ambient phase of a one

zone model for a variety of different choices of initial temperature

and density. The total gas density, ambient gas plus clouds, is always

2 cm−3. The interplay of supernova feedback and radiative cooling

quickly brings the system into an equilibrium independent of the initial

value. The initial conditions for each of the simulations are as follows:

T = 106K , 100% atomic (solid line); T = 10K , initially 100% atomic

(dotted line); T = 106K , initially 10% atomic (dashed line).
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Figure 3.10: The large scale properties of a one zone model with initial

density n0 = 2 cm−3. The physical parameters used in this model are

the same as the base model as discussed in section 3.3.1
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Figure 3.11: Same as Fig (3.10) except with an initial gas density of

n0 = 16 cm−3
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relation, αc; the efficiency of star formation in any given cloud collapse, ε?; the maximum

relative cloud velocity for merger (vstick) and the amount of energy ejected per SNII event

(E51).

Even though the initially assumed cloud spectrum, N(M)dM ∝ M−8 dM , is very

steep and far from equilibrium, SNe feedback and cloud coagulation rapidly build a

mass spectrum N(M)dM ∝ M−α dM with α ≈ 2 (Fig (3.6)), close to what is the ob-

served cloud spectrum in the MW (dashed line) and M33 (dotted lines). This gives us

confidence that, although the modelling of cloud formation is simple, it does produce a

realistic cloud spectrum.

The ISM model can also reproduce the observed Schmidt law. We find that in our

model the interaction between the coagulation of clouds and their destruction by stars

leads to a SFR-density relation that is in good agreement with observation (Fig (3.7)) if

vstick is set to 7km/s. This represents a reasonable value for the molecular cloud velocity

dispersion, as considering theoretical models for the origin of random motion on molec-

ular clouds, we would expect typical velocities in the range 5-7km/s (Jog and Ostriker

(1988))

The effect of changing the mass resolution of the simulation over two orders of mag-

nitude is demonstrated in Fig (3.8). Sub-resolution clouds that are simulated only by

integrating the coagulation equations are designed to behave in exactly the same way as

the resolved cloud particles in the simulation, and so we expect the simulations not to

depend strongly on particle number. This is borne out by the good agreement between

simulations carried out with only one resolved particle (Fig (3.8), line with mass resolu-

tion of 109M�) where all of the physics is followed by integrating the sub-grid equations

in a single particle and simulations with a hundred particles that are followed explicitly.

As stated in previous sections, the behaviour of a one zone model is virtually inde-

pendent of its initial temperature and the fraction of the gas that starts off in the cold

phase. This behaviour is demonstrated in Fig (3.9). A one zone volume with total initial

density of n0 = 2cm−3 was evolved with a variety of different initial values for the initial

temperature and initial fraction of the mass in the hot phase. We observe that regardless

of the initial choices for these two quantities the system quickly settles down to its equi-

librium state. This process occurs through the opposing actions of thermal conduction

and supernova feedback.

Fig (3.10) and Fig (3.11) show the behaviour of the large scale properties of two

different one zone volumes as a function of time. The only difference in the initial condi-
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tions of the two one zone volumes is their initial density Fig (3.10) shows the evolution

of a one zone volume with a total density of 2 atoms/cm3; Fig (3.11) shows exactly the

same plots for a density of 16 atoms/cm3. The initial temperature of the hot phase in

both simulations is 106K. In both cases the star formation rate follows the same general

shape. There is a small period of time at the beginning of the simulation where small

clouds are coagulating and there is no star formation. When GMCs are formed there

is a large burst of star formation that is quickly quenched by feedback SN and thermal

conduction in SN bubbles. The temperature of the diffuse phase is regulated by a combi-

nation of supernova feedback (acting to increase the temperature) and radiative cooling.

Due to the fact that we do not allow mass to leave the one zone volume and also as-

sume instantaneous recycling, the temperature profile very closely matches that of the

star formation rate. It is noted that in the one zone simulation with the largest density,

the temperature of the ambient phase is held at a higher temperature by the action of

supernovae. The fraction of the gas in the molecular phase is lower in the high density

simulation due to the increased amount of evaporation by thermal conduction in the

high temperature ambient phase. In the following chapter the star formation and feed-

back prescriptions are tested in a more realistic situation, and the properties of the ISM

in a simulated galaxy are investigated. In the final chapter we look in detail at the star

formation history of a merging galaxy.


